
Chasing Objectivity
With TDBNavigator
by Robert Palomo

A commercial Delphi 1 software
project I have been working on

raised an interesting problem re-
lated to the TDBNavigator compo-
nent. The application is Multiple
Document Interface (MDI) and
each of the MDI Child forms en-
ables the user to display and up-
date data from a different table.
The MDI parent form features a
single navigator control that oper-
ates on whatever child form is ac-
tive on the desktop. Although there
are parallel menu commands, the
main control for inserting, deleting
and posting to the underlying
Paradox database is the main
form’s navigator control.

A twofold problem involving the
use of the TDBNavigator component
arose in this project. First, if a key
violation or other BDE error oc-
curred when the user updated the
database, the plain vanilla BDE er-
ror message would display. We
wanted a way to intercept the error
and display a more informative
message. Second, if the user at-
tempted to delete a record in viola-
tion of the database’s referential
integrity rules, we wanted to trap
that event and present information
to the user for analyzing the prob-
lem and correcting the data (some-
how, merely showing end users the
BDE message Master Has Detail
Records. Cannot Delete or Modify
just didn’t seem like enough!).

A little research quickly pointed
up the fact that the TDBNavigator
component has a mind of its own
when it comes to firing off calls to
the BDE. You cannot intercept a
Post or Delete call using the compo-
nent, there are no properties or
events available that enable you to
do so. An examination of the
DBCTRLS.PAS unit, the VCL source
code unit where the TDBNavigator
class is located, showed that
indeed, the component uncondi-
tionally sends off calls (Insert,

Post, Delete etc.) to the BDE. I had
thought of using the Before/After
events of TTable, but this proved
not to be an option. It turns out that
TDBNavigator’s BDE calls reference
a TDataSource object, thus by-
passing TTable events.

Delphi being the object-oriented
animal that it is, the solution
seemed easy enough on the sur-
face. I thought that I could derive a
new object from the TDBNavigator
class and override the method that
sends BDE calls, putting in my own
code to handle BDE errors. If
TDBNavigator were designed with as
much object orientation as other
Delphi components, that’s what I
should have been able to do. But,
as I’ll show you, it’s not that simple!

While most components lend
themselves to effortless subclass-
ing, the author of TDBNavigator
[Anyone in Borland want to own up
to this one...?! Editor] seems to have
taken pains to make it impossible
to subclass the component and
add any useful functionality to it.

My research led me to conclude
that the only practical means of
solving my problem without modi-
fying and recompiling the original
Borland source code was with a
non object oriented approach
which I will describe in this article.
This was a very surprising conclu-
sion after my previous experience
of subclassing other components.

The drawback to duplicating my
method is that you can do so only
if you have VCL source code. For
those of you without access to the
code, a compiled version of my
modified TDBNavigator accompa-
nies this article on this month’s
disk. You can install and use it like
any other custom VCL, but you
won’t be able to make any other
changes. The remainder of the
article will at least help you
understand what’s happening
behind the scenes.

Problems With Inheritance
In the DBCTRLS.PAS source code,
the key interaction with the BDE
takes place in a method called
BtnClick, which is declared as
public, which at first glance might
make one think that it can be over-
ridden in a descendant object.
However, since BtnClick is a static
method, rather than a virtual or
dynamic method, overriding it in a
descendant is out. Further inspec-
tion reveals that BtnClick is always
called by the Click method, which
is declared private! The upshot of
this is that in a descendant object,
you can’t override BtnClick and
you can’t access Click (except by
calling it with the inherited key-
word, which doesn’t help, as I’ll
demonstrate).

In working out this solution, I did
think about using inherited to try
to stay on the true object oriented
path. I tried subclassing the com-
ponent, calling the inherited Click
to keep the compiler happy, but
placing the call to Click in a pro-
tected block to try and trap the
BDE error:

try
 Inherited Click;
 Except on EDBEngineError do
 { ... error handling code }
end;

Unfortunately, this didn’t help at
all. The ancestor component still
blithely fires off its calls (Post,
Delete etc) to the engine. If a Key or
Referential Integrity violation
occurs, the system architecture is
such that an exception is immedi-
ately raised during the execution of
the ancestor’s method and the
plain vanilla engine message pops
up right then and there. There is
still no opportunity to intercept the
error, so the protected block was a
wasted effort and I was right back
where I started.

50 The Delphi Magazine Issue 10

➤ Figure 1: KDBNavigator in action

By now, I expect you can imagine
I was feeling pretty frustrated in
coming up with an object oriented
solution to this seemingly simple
problem. There was one last thing
I thought I might try. According to
the documentation, you can
replace a static method of an an-
cestor class in a descendant by
declaring and coding a method
with the same name in the descen-
dant object’s unit [See Jim Cooper’s
article on Type-Safe Lists last month
for examples. Editor]. So, I thought,
why don’t we just subclass the
component, cut and paste the
Click and BtnClick methods from
the TDBNavigator section of the
DBCTRLS unit into the new unit and
modify BtnClick to suit our needs?
Again, it seemed that someone had
gone out of their way to trip me
up...

After I’d done the cut and paste
job and modified BtnClick to han-
dle a BDE error, I found that the last
line of that procedure references a
field in the ancestor, FOnNavClick.
Going back and looking at its decla-
ration in DBCTRLS, I found that
FOnNavClick is declared private,
meaning there is no way for my
descendant object to know about
it, so the new component wouldn’t
compile. Once again, I was SOL
(sorta outta luck) for a truly object
oriented solution.

Non Object Oriented Solution
Despite a great deal of anguished
gnashing of teeth and shouts of
“there has to be an object oriented
solution to this!” amongst my col-
leagues and myself, the project
deadline nonetheless loomed large
on the horizon and we needed
something that worked and we
needed it yesterday. Since we are
proud licensees of the VCL source,
I regretfully went for a non object
oriented hack which at least works
and which I’ll share with you to the
extent I can without actually re-
printing the source code which
Borland prefers that you buy. If you
want to implement this solution
yourself, perhaps making other
modifications, you’ll need your
own copy of the VCL source. The
following section will be easier to
understand if you can open up the

DBCTRLS unit and refer to it as we
go along.

Overview Of The Process
Let me preface this by saying that
you could, if you wanted to, go in
and modify the TDBNavigator sec-
tions of the DBCTRLS unit, modify-
ing the functionality of the
TDBNavigator class itself. All you
would really need to do is to de-
clare the BtnClick method for
TDBNavigator as virtual and recom-
pile the unit. That should enable
you to subclass the component
and override the method. I chose
to leave Borland’s units alone and
create my own component unit
containing only those portions of
DBCTRLS that pertain to the
TDBNavigator. Here’s what I did.

In a new project, after closing the
default new form without saving it,
create a new unit (File | New Unit).
Then open the DBCTRLS.PAS file in
the IDE (File | Open File). This is
normally located in the directory
\DELPHI\SOURCE\VCL in installa-
tions having the VCL source (tip:
open this file in a second edit
window View | New Edit Window).

Next, copy the DBCTRLS
Interface section’s Uses clause to
the Interface section of your new
unit. Copy the Interface section’s
type declarations for class
TDBNavigator to the Interface of
your new unit. You can locate this

code quickly by starting at the top
of the unit file and searching for
the first { TDBNavigator } comment
string. Note that you need to begin
copying with the type reserved
word that appears nine lines or so
before this first instance of the
comment string.

Now copy the declarations for
TNavButton and TDataLink that
follow the TDBNavigator declara-
tions. You are now ready for the
Implementation section of the unit.

Copy the Uses clause of the
DBCTRLS Implementation section
to the Implementation section of
your unit. Also copy the $R
compiler directive (see the sidebar
at the end for information on
enhancing the appearance of your
new component).

Now search for the next occur-
rence of the { TDBNavigator } com-
ment string. You should see a const
reserved word right after this
comment. Copy the const declara-
tions and all of the TDBNavigator
type procedures, followed by the
TNavButton procedures and the
TNavDataLink procedures to your
new unit. This brings you to the
end of the DBCTRLS unit, which
you can now close.

Save your new unit giving it an
appropriate name. I called mine
KDBNAV.PAS. We now have a unit
that, if compiled with the neces-
sary resources, is identical to

June 1996 The Delphi Magazine 51

TDBNavigator. So identical in fact
that we must make a few changes
to avoid having the class names
bump into each other. For the
purposes of illustration, I’ll call the
unit we just created KDBNAV.
Return now to the KDBNAV unit
and make the following changes.

In the Interface section, you
need to rename all the class decla-
rations to avoid conflicts with
TDBNavigator. I simply changed the
leading T to the letter K (to give my
employers, Kallista, a plug!). The
only exception is that I renamed
the TDBNavigator class declaration
to TKDBNavigator (mainly because
I’m used to working with compo-
nents named T-something). For
each type that you rename, you’ll
want to do a search and replace to
change every occurrence of the old
name in the unit.

Add the following procedure at
the end of the unit:

procedure Register;
begin
 RegisterComponents(
 ’DataControls’,
 [TKDBNavigator]);
end;

You can substitute the name of
any of the existing palette pages for
’DataControls’, or the name of a
new palette page that you want to
create. Add the declaration for this
procedure right before the
Implementation reserved word of
the unit.

Once you’ve completed these
steps, you have a component
TKDBNavigator that should compile
and install to the palette (assuming
you have the necessary resource
files available in the component’s
directory). However, at the mo-
ment, it’s identical in functionality
to the TDBNavigator component. We
now want to modify the component
so that it can help us handle errors
from the BDE a bit more gracefully.

Modifying The
TKDBNavigator
We will add a new event OnBDEError
that will occur whenever the
EDBEngineError exception is raised
in conjunction with the use of the
TKDBNavigator. We’ll also add a new

read-only property EngineErrCode
which will store the error code
returned by the BDE. The following
procedures assume that you re-
named all your types substituting K
for the leading T. Here are the steps
for these changes (I’ll summarize
them after the last step).

In the first type declaration of the
Interface section, add the follow-
ing line before the class declaration
for TKDBNavigator:

KEngineErrEvent =
 procedure(Sender: TObject)
 of object;

Add two new fields in the private
section of TKDBNavigator’s record:

FEngineErrCode: Word;
FOnBDEError: KEngineErrEvent;

The first will store a BDE error code
and the second holds event han-
dling code for the new OnBDEError
event we are implementing.

Also in the private section, add
declarations for a new function and
procedure to read and write the
new field:

function GetErrCode: Word;
procedure SetErrCode(
 const InVal: Word);

Declare the new property in the
public section of TKDBNavigator’s
record:

property EngineErrCode: Word
 read FEngineErrCode
 write FEngineErrCode;

Finally, in the published section,
declare the new event as a publish-
ed property:

property OnBDEError:
 KEngineErrEvent
 read FOnBDEError
 write FOnBDEError;

For more information on the ins

unit Kdbnav;
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Controls, Forms,
 Graphics, Menus, StdCtrls, ExtCtrls, DB, DBTables, Mask, Buttons;
const
 { constants from DBCTRLS unit }
type
 { declarations from DBCTRLS unit, plus... }
 KEngineErrEvent = procedure(Sender: TObject) of object;
 TKDBNavigator = { as declared in DBCTRLS unit, note new name for class }
 private
 { field declarations from DBCTRLS unit, plus... }
 FEngineErrCode: Word; { added field- store BDE error code # }
 FOnBDEError: KEngineErrEvent; { added field- event for BDEErrors }
 { procedure and function declarations form DBCTRLS, plus... }
 function GetErrCode: Word; { Gets BDE Error code no. }
 procedure SetErrCode(const InVal: Word); { Set BDE Error code no. }
 protected
 { declarations from DBCTRLS unit, nothing added }
 public
 { declarations from DBCTRLS unit, plus... }
 property EngineErrCode: Word read FEngineErrCode write FEngineErrCode;
 published
 { declarations from DBCTRLS unit, plus... }
 property OnBDEError: KEngineErrEvent read FOnBDEError write FOnBDEError;
end;

➤ Listing 1

{ Added procedures }
function TKDBNavigator.GetErrCode:
 word;
begin
 Result := FEngineErrCode;
end;

procedure TKDBNavigator.SetErrCode(const InVal: Word);
begin
 FEngineErrCode := InVal;
end;

➤ Listing 2

52 The Delphi Magazine Issue 10

and outs of private, protected,
published etc see the Component
Writers Guide and Bob Swart’s
article Private Investigations in the
February 1996 issue.

So, leaving out all the other origi-
nal Borland code, which they pre-
fer that you pay for, the interface
section for your new component
unit looks something like Listing 1.

Now we need to add a bit of code
to the implementation section of the
unit to read and write the new
FEngineErrCode field we added to
the component class record. Add
the code in Listing 2 near the end
of the file, right before the Register
procedure.

The Final Frontier
If you’ve managed to hang in there
with me through all of the fore-
going steps, I congratulate you. I
know it’s a bit tedious. But we’re
now ready to get to the heart of the
matter.

If you’ll take a moment to study
the BtnClick method in the
TDBNavigator section of DBCTRLS,

you will see the Case construct that
issues those calls to the engine.
Notice that the statements are un-
conditional. They send off that call
no matter what, no error checking
takes place. And that’s what we
want to change.

Only two of these Case state-
ments really concern us, those that
call Post and Delete, because it is
on those actions that an error is
most likely to occur and it is over
those actions that we want to exert
our own control when the
KDBNavigator is being used to
update a data set. We’ll modify the
Post and Delete cases to place the
engine call in a protected try..
except block (you could add
protected blocks to any or all of the
other Case statements if you see a
need) The protected block will
intercept the EDBEngineError ex-
ception, at the same time creating
an instance of the exception object.
From the properties of that object
we can get the BDE error code
number (we could also get the mes-
sage string if we wanted it). We can

then trigger our OnBDEError event,
writing the engine error code to the
field FEngineErrorCode which is sub-
sequently accessible through our
new public property EngineErrCode.
If nothing is assigned to our new
field FOnBDEError (ie there is no
event handler code for the new
OnBDEError event), then and only
then do we allow the normal excep-
tion to be raised. Otherwise, we
handle the error with code in
TKDBNavigator’s OnBDEErrorEvent
handler. Listing 3 (next page)
shows how to modify these two
case statements.

All that remains to create the
new KDBNavigator component is to
compile it with the appropriate
resource files (.RES and .DCR) pre-
sent and install it to the component
palette.

I’ll be the first to admit that the
solution I’ve presented here is little
more than a quick-n-dirty hack to
get something that works into a
real project. In going to all the
trouble of re-creating this new unit,
the “right” thing to do would

June 1996 The Delphi Magazine 53

probably have been to re-write the
component in such a way that it
would be easier to derive descen-
dants from it (declaring the
BtnClick method as virtual, for
example). Oh well, maybe next
time around... when I have more
time!

Now that you understand what
goes on behind the scenes, I hope
you’ll latch onto the compiled
KDBNAV.DCU and use it if the need
arises.

Robert Palomo works as a Delphi
developer for Kallista, Inc and can
be contacted by email as
76201,3177 on CompuServe

case Index of
 ... {as in DBCTRLS TDBNavigator.BtnClick}
 ...
 nbPost:
 begin
 Try
 Post;
 Except on PErrObj: EDBEngineError do begin
 { Set BDE Error code no. into property value }
 SetErrCode(PErrObj.Errors[0].ErrorCode);
 If Assigned(FOnBDEError) then
 { If this error occurs & there is a user event handler, then
 execute it, otherwise, raise the exception }
 FOnBDEError(Self)
 Else
 Raise;
 end else
 Raise;
 end;
 end;
 nbDelete:
 begin
 if not FConfirmDelete or (MessageDlg(LoadStr(SDeleteRecordQuestion),
 mtConfirmation, mbOKCancel, 0) <> idCancel) then begin
 Try
 Delete;
 Except on DErrObj: EDBEngineError do begin
 { Set BDE Error code no. into property value }
 SetErrCode(DErrObj.Errors[0].ErrorCode);
 If Assigned(FOnBDEError) then
 FOnBDEError(Self)
 { If this error occurs & there is a user event handler then
 execute it, otherwise, raise the exception }
 else
 Raise;
 end else
 Raise;
 end;
 end;
 end;
 ... { as in DBCTRLS TDBNavigator.BtnClick }
 ...
end; { case }

➤ Listing 3

Spice Up Your Navigator!
If you’re developing in-house applications for your company, you can

probably live with the “stock” graphics of the TDBNavigator, boring
though they may perhaps be. If, however, you are developing apps of
a more commercial grade, you’d probably like to put a little more life
in the TDBNavigator.

Changing the graphics that display on this component is a snap. All
you have to do is replace the bitmaps in the DBCTRLS.RES file (normally
found in \DELPHI\LIB). If you’re handy with the Image Editor, you can
open up this file (make a backup first!) and draw some spiffy new images
to replace the originals. For the less artistically inclined, you’ll find
several replacements for this resource file in the Delphi forum library
on CompuServe (mine is included with the KDBNavigator .DCU).

To use one of these third party replacements, follow these steps.
➣ Preserve the original resource file by renaming it DBCTRLRC.OLD

or some such name.
➣ Copy the third-party resource file to the \DELPHI\LIB directory,

naming it DBCTRLS.RES.
➣ Recompile your COMPLIB.DCL (Options | Rebuild Library). You do

have a recent back up of your COMPLIB.DCL, don’t you?
Now whenever you drop a navigator into a form, you’ll get the zippy
new look.

54 The Delphi Magazine Issue 10

	Problems with Inheritance
	Non Object Orientated Solution
	Overview Of The Process
	Modifying The TKDB Navigator
	The Final Frontier

